Cognitive science

Developed in a Research Lab of Engineers and Scientists as a Solution for Practical Emotional Research Applications.

The first consumer research tool that combines computer science, digital signal processing, and cognitive science to deliver scientifically rigorous and objective emotional data.


The autonomic nervous system (ANS) is responsible for regulating organs, glands, breathing and physical arousal. It is constantly working to maintain equilibrium between the sympathetic and parasympathetic nervous systems, better known as the “fight-or-flight” and “rest-and-relax” structures, respectively.

Levels of Electrodermal Activity (EDA) and Heart Rate (HR) are measured through microscopic changes using the Affect-tag wristband, transforming these involuntary reactions into digital data. With the advancement of technology and the development of proprietary algorithms, information on emotional and cognitive states are derived from the data and converted into Affect-tag Emotional Indicators


The measure of emotions is scientifically possible using several different modalities: measuring the Central Nervous System activity via EEG and fMRI; analyzing movement behaviors using EMG, facial recognition, voice recognition, and body gestures; recording the Peripheral Nervous System via physiological signals (heart rate, perspiration, skin temperature) and physical reactions (pupil dilation).

All of these modalities have been studied and are well documented in the academic literature. Among them, the measure of the Peripheral Nervous System is one which can be done using non-intrusive, mobile and continuous measurement

Scientific validation at every step



The Affect-tag band is built using medical-grade equipment to ensure its reliability. 



Benchmark tests against scientific standards and equipment were successfully confirmed.



Affect-tag cognitive algorithms and emotional KPIs have been refined using carefully constructed databases.

Our Scientific partners

Academic references: bibliography

Andreassi, J. L. (2000). Psychophysiology: human behavior and physiological response (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
Ayzenberg, Y., & Picard, R. W. (2014). FEEL: A System for Frequent Event and Electrodermal Activity Labeling. IEEE Journal of Biomedical and Health Informatics, 18(1), 266–277. doi: 10.1109/jbhi.2013.2278213
Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2010). Modelling event-related skin conductance responses. International Journal of Psychophysiology, 75(3), 349–356. doi: 10.1016/j.ijpsycho.2010.01.005
Backs, R. W., & Boucsein, W. (2000). Engineering psychophysiology: issues and applications. Mahwah, NJ: Lawrence Erlbaum Associates.
Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80–91. doi: 10.1016/j.jneumeth.2010.04.028
Benedek, M., & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology. doi: 10.1111/j.1469-8986.2009.00972.x
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98(4), 459–487. doi: 10.1037//0033-295x.98.4.459
Boucsein, W. (2012). Electrodermal activity (2nd ed.). New York: Springer.
Braithwaite, J. J., Watson, D. G., Jones, R., & Rowe, M. (n.d.). A Guide for Analysing Electrodermal Activity (Eda) & Skin Conductance Responses (SCRs) for Psychological Experiments. Selective Attention & Awareness Laboratory (SAAL) Behavioural Brain Sciences Centre, University of Birmingham, UK. Retrieved from
Choi, J., Ahmed, B., & Gutierrez-Osuna, R. (2012). Development and Evaluation of an Ambulatory Stress Monitor Based on Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 16(2), 279–286. doi: 10.1109/titb.2011.2169804
Darrow, C. W. (1937). Neural Mechanisms Controlling The Palmar Galvanic Skin Reflex And Palmar Sweating. Archives of Neurology & Psychiatry, 37(3), 641. doi: 10.1001/archneurpsyc.1937.02260150171011
Hot, P., & Deplanque, S. (2013). Electrophysiologie de la cognition. Paris: Dunod.
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. doi: 10.1016/j.biopsycho.2010.03.010
Kusserow, M., Amft, O., & Troster, G. (2013). Monitoring Stress Arousal in the Wild. IEEE Pervasive Computing, 12(2), 28–37. doi: 10.1109/mprv.2012.56
Ledoux, J. E. (2009). Emotion Circuits in the Brain. Focus, 7(2), 274–274. doi: 10.1176/foc.7.2.foc274
Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro, I., Manor, B., & Gordon, E. (1997). Decomposing skin conductance into tonic and phasic components. International Journal of Psychophysiology, 25(2), 97–109. doi: 10.1016/s0167-8760(96)00713-1
Massot, B., & Gehin, C. (2011). Conception, réalisation de capteurs non-invasifs ambulatoires et d’exocapteurs embarqués pour l’étude et le suivi de la réactivité émotionnelle (Doctoral dissertation). L’Institut National des Sciences Appliquées, Lyon, France.
Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition & Emotion, 23(2), 209–237. doi: 10.1080/02699930802204677
Mendes, W. B. (2009). Assessing autonomic nervous system activity. In E. Harmon-Jones & J. S. Beer (Eds.), Methods in social neuroscience (pp. 118-147). New York, NY, US: Guilford Press.
Sequeira, H., Hot, P., Silvert, L., & Delplanque, S. (2009). Electrical autonomic correlates of emotion. International Journal of Psychophysiology, 71(1), 50–56. doi: 10.1016/j.ijpsycho.2008.07.009

On HR/HRV Baevsky, R.M. (2008). Use Kardivar System for determination of the stress level and estimation of the body adaptability. Standards of measurements and physiological interpretation. (Technical Report) Moscow, Russia.
Castaldo, R., Melillo, P., Bracale, U., Caserta, M., Triassi, M., & Pecchia, L. (2015). Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomedical Signal Processing and Control, 18, 370–377. doi: 10.1016/j.bspc.2015.02.012
Delane, A., Bohorquez, J., Gupta, S., & Schiavenato, M. (2016). Lomb algorithm versus fast fourier transform in heart rate variability analyses of pain in premature infants. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi: 10.1109/embc.2016.7590857
Eckberg, D. L. (1997). Sympathovagal Balance. Circulation, 96(9), 3224–3232. doi: 10.1161/01.cir.96.9.3224
Elgendi, M. (2016). Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering, 3(4), 21. doi: 10.3390/bioengineering3040021
Jang, D.-G., Park, S., Hahn, M., & Park, S.-H. (2014). A Real-Time Pulse Peak Detection Algorithm for the Photoplethysmogram. International Journal of Electronics and Electrical Engineering, 45–49. doi: 10.12720/ijeee.2.1.45-49
Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., & Koo, B.-H. (2018). Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investigation, 15(3), 235–245. doi: 10.30773/pi.2017.08.17
Krishnan, R., Natarajan, B., & Warren, S. (2008). Analysis and detection of motion artifact in photoplethysmographic data using higher order statistics. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. doi: 10.1109/icassp.2008.4517684
Liang, Y., Chen, Z., Liu, G., & Elgendi, M. (2018). A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific Data, 5(1). doi: 10.1038/sdata.2018.20
Murthy, V., Ramamoorthy, S., Srinivasan, N., Rajagopal, S., & Rao, M. (2001). Analysis of photoplethysmographic signals of cardiovascular patients. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi: 10.1109/iembs.2001.1017209
Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi: 10.1111/j.1540-8159.2010.02841.x
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5. doi: 10.3389/fpubh.2017.00258
Tarvainen, M. P., Lipponen, J. A., & Kuoppa, P. (2017). Analysis and Preprocessing of HRV—Kubios HRV Software. ECG Time Series Variability Analysis, 159–186. doi: 10.4324/9781315372921-7